skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koslovsky, Matthew D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 13, 2025
  2. Abstract The Dirichlet-multinomial (DM) distribution plays a fundamental role in modern statistical methodology development and application. Recently, the DM distribution and its variants have been used extensively to model multivariate count data generated by high-throughput sequencing technology in omics research due to its ability to accommodate the compositional structure of the data as well as overdispersion. A major limitation of the DM distribution is that it is unable to handle excess zeros typically found in practice which may bias inference. To fill this gap, we propose a novel Bayesian zero-inflated DM model for multivariate compositional count data with excess zeros. We then extend our approach to regression settings and embed sparsity-inducing priors to perform variable selection for high-dimensional covariate spaces. Throughout, modeling decisions are made to boost scalability without sacrificing interpretability or imposing limiting assumptions. Extensive simulations and an application to a human gut microbiome dataset are presented to compare the performance of the proposed method to existing approaches. We provide an accompanying R package with a user-friendly vignette to apply our method to other datasets. 
    more » « less